24,453 research outputs found

    Impact of money on emotional expression

    Get PDF
    Activating the concept of money can influence people's own expressions of emotion as well as their reactions to the emotional expressions of others. Thinking about money increases individuals' disposition to perceive themselves in a business-like relationship with others in which transactions are based on objective criteria and the expression of emotion is considered inappropriate. Therefore, these individuals express less emotion in public and expect others to do likewise. Six experiments show that subtle reminders of money lead people to have more negative attitudes toward expressing emotions in public and to avoid expressing emotion in their written communications. In addition, money-primed participants judge others' emotions to be more extreme and are disposed to avoid interacting with persons who display these emotions, especially when participants believe that these emotions are expressed in public.postprin

    An efficient marching-on-in-degree solution of transient multiscale EM scattering problems

    Get PDF
    A marching-on-in-degree (MOD)-based time-domain domain decomposition method is proposed to efficiently analyze the transient electromagnetic scattering from electrically large multiscale targets. The algorithm starts with an octree that divides the whole scattering target into several subdomains. Then using the equivalence principle algorithm, each subdomain is enclosed by an equivalence sphere (ES), where both the RWG and BoR spatial basis functions are employed to expand the unknown currents. The interactions of the near-field subdomains are directly calculated by the method of moments, while the far-field interactions can be converted into the interactions of corresponding ESs. This scheme implicitly satisfies the current continuity condition, and the convergence can be accelerated as well. By harnessing the rotational symmetry of the ESs, the computational resources are reduced significantly compared with the traditional MOD method. Several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed algorithm. Ā© 2016 IEEE.postprin

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cellā€™s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    Strong Casimir force reduction through metallic surface nanostructuring

    Full text link
    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.Comment: 11 pages, 8 figure

    Nematicidal, larvicidal and antimicrobial activities of some new mannich base imidazole derivatives

    Get PDF
    Purpose: To synthesize Mannich base imidazole derivatives, and evaluate their antimicrobial, nematicidal and larvicidal properties .Methods: Compounds 1a-g and 2a-g were prepared using a Mannich condensation method. The chemical structures of compounds 2a-g were confirmed by Fourier transform infrared spectroscopy (IR), proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR), and mass spectrometry (MS) and elemental analyses. Compounds 1a-f and 2a-f were screened for antimicrobial properties using an agar diffusion method. The nematicidal activity of the compounds was evaluated against juvenile Meloidogyne javanica as test organism while larvicidal activity was assessed against the urban mosquito, Culex. Quinquefasciatus, using a standard bioassay protocol.Results: Compounds 1b, 1g, 2e and 2g were highly active against a few bacterial organisms compared with the reference antibacterial, ciprofloxacin while the antifungal activity of compound 2d was high compared with the reference, clotrimazole. Compounds 1c, 1e, 1g, and 2e showed high toxicity levels of larvicidal activity based their half maximal lethal dose (LD50) values. Compounds 1d, 1e, 1f, 1g, 2d and 2e were highly toxic to nematodes.Conclusion: Compounds 1b, 1g, 2e and 2g may be useful as lead molecules for the development of new classes of larvicidal, nematicidal and antimicrobial agents

    A Robust and Ultra-Fast Short Circuit Detection in Half-Bridge Using Stray Voltage Capture:Applied in Electromagnetic Suspension

    Get PDF
    The paper proposes a robust and ultra-fast short circuit detection method based on the voltage dip in the half-bridge due to the presence of stray inductance. For the application of the inverter in electromagnetic suspension, the short circuit is detected in less than 100 ns, which is a promising solution against the Fault Under Load due to a Single-Event Burnout failure type

    Business process modelling and visualisation to support e-government decision making: Business/IS alignment

    Get PDF
    Ā© 2017 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-57487-5_4.Alignment between business and information systems plays a vital role in the formation of dependent relationships between different departments in a government organization and the process of alignment can be improved by developing an information system (IS) according to the stakeholdersā€™ expectations. However, establishing strong alignment in the context of the eGovernment environment can be difficult. It is widely accepted that business processes in the government environment plays a pivotal role in capturing the details of IS requirements. This paper presents a method of business process modelling through UML which can help to visualise and capture the IS requirements for the system development. A series of UML models have been developed and discussed. A case study on patient visits to a healthcare clinic in the context of eGovernment has been used to validate the models

    Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation

    Get PDF
    This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed
    • ā€¦
    corecore